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ABSTRACT

This paper describes a variety of practical application circuits based on the current loop signal

conditioning paradigm. Equations defining the circuit response are also provided. The constant

current loop is a fundamental signal conditioning circuit concept that can be implemented in a

variety of configurations for resistance-based transducers, such as strain gages and resistance

temperature detectors. The circuit features signal conditioning outputs which are unaffected by

extremely large variations in lead wire resistance, direct current frequency response, and inher-

ent linearity with respect to resistance change. Sensitivity of this circuit is double that of a

Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same

excitation and output sense wires can serve multiple transducers. More application arrangements

are possible with constant current loop signal conditioning than with the Wheatstone bridge.

INTRODUCTION

The Wheatstone bridge circuit has a long history of successfully being used to measure electrical

resistance and small changes in that resistance. 1 The variable resistance strain gage has used the

Wheatstone bridge circuit in various forms for signal conditioning since its inception. 2 An adap-

tation of the Wheatstone bridge includes multiple constant current excitation sources within and

external to the bridge. 3 A similar technique for minimizing the number of lead wires in multi-

channel strain measurements also exists. 4

Current loop topology was developed to overcome the inherent difficulties of the Wheatstone

bridge without the complexity arising from multiple excitation sources: An extension of this

paradigm provides the ability to simultaneously measure temperature and strain by using ther-

mocouple wire to connect a variable-resistance strain gage to the signal conditioning circuitry. 6

The current loop is in daily use for strain gage signal conditioning at the NASA Dryden Flight

Research Center.

This paper reviews the theory of the current loop paradigm and presents various possibilities for

accomplishing the key voltage difference measurement function. Two loop current-regulation

approaches are presented. In addition, a variety of circuit applications based on the current loop

signal conditioning paradigm is described. Equations defining the circuit response are presented.



Key contributionsof Allen R. Parker, Jr., who implemented the equations of the constant loop

signal conditioning concept with practical circuitry and software, are gratefully acknowledged.

CURRENTLOOPTHEORY

The current loop paradigm is a fundamental circuit concept that will operate with various elec-

trical components and forms of excitation. Excitation possibilities include direct, alternating, and

pulsed currents. Inductance and capacitance measurements are possible with alternating current
excitation. The various forms of excitation each have advantages that indicate their selection for

use in certain applications and environments. For simplicity, direct current excitation and resis-

tive components are used in the illustrations and equations presented in this paper.

Single Remote Gaze Resistance

Figure 1 diagrams the current loop signal conditioning paradigm and illustrates the theory that

explains its operation for a single-gage resistance sensor. The unique part of the approach illus-

trated in figure 1 is the four-terminal voltage difference measuring system. The Rw] through Rw4

are lead wire resistances with Rw] and Rw2 carrying the constant excitation current, I. The gage

is modeled by an initial resistance, R, in series with its resistance change, AR. Note that if the

sensing system for the voltage across the gage, Vg, has a sufficiently high input impedance, then
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Figure 1. Current loop circuit for single-gage resistance.

Vout = I(AR)
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no appreciable current will flow through Rw3 and Rw4. As a result, no significant voltage drop

will occur across them. The Rref is a reference resistor used to develop a voltage, Vref, which is

subtracted from the voltage across the gage, Vg.

The four-terminal, high-impedance voltage difference measuring system of figure 1 uses two ter-

minals to sense Vg and two terminals to sense Vref. Equations 1 through 3 model the circuit and
illustrate the benefit of this four-terminal voltage measurement in a single constant current loop.

Vout = V 8 - Vre[ (1)

Vou t = I(R + AR) - l(Rrei) (2)

When Rref = R,

Vou , = I(AR) (3)

Note that Rw does not appear in equations 1 through 3; therefore, Vou t is theoretically uninflu-

enced by any Rw.

A small difference between the initial gage resistance and the reference resistor will result in a

correspondingly small output offset. This offset can be subtracted out in data reduction. This

practice is standard procedure in strain-gage data reduction. Such subtraction is also commonly

used with practical Wheatstone bridge circuits. The maximum output voltage change per unit of

resistance change is achieved when using constant current excitation. Ignoring the second-order

effects of the AR term in the denominator of the equation for the Wheatstone bridge output gives

eo = (E x/4)(AR/R) (4)

where e o is the output, and E x is the excitation for Wheatstone bridge circuits. Because the E x is

2Vg in a Wheatstone bridge circuit, the output in terms of the gage current and gage resistance
change is

eo = I(AR)/2 (5)

Note that the output available from the Wheatstone bridge is one-half of the output available

from the constant current loop output (eq. 3).

Multiale Remote Resistances

The same reference resistor voltage drop, Vref, can be used as an input for more than one voltage
difference function. This feature makes it practical to include more than one gage resistance in a

single current loop. The key benefit of including multiple gages in the current loop is a reduction

in the required number of lead wires. 5 To make apparent strain corrections, the reference resis-

tance can be a gage resistance to achieve temperature compensation and arithmetic calculations.

Refer to the Apparent Strain Corrections sub-subsection for additional details.



Figure 2 illustrates three gage resistances, Rgl, Rg 2, and Rg 3, in a single loop. This configuration

is applicable to the common technique of using a group of three strain gages installed near each

other to estimate the magnitude and direction of principal strain. The advantages of the constant

current loop are obtained with only six lead wires. That is three wires less than are required when

using a Wheatstone bridge circuit for the same measurement requirement.
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Figure 2. Strain-gage rosette measurement using current loop signal conditioning with six lead

wires.

RATIOMETRIC CURRENT LOOP MEASUREMENTS

A single reference voltage used to derive system voltage reference levels can simplify and stabi-

lize the measurement system. Figure 3 illustrates the ratiometric current loop which uses VreftO

normalize the output voltage Vou r If the loop current should vary, then Vrefwill vary by the same
amount. The resulting data values are the same regardless of the level of excitation current as

long as no appreciable current variation occurs during the analog-to-digital conversion process.
With ratiometric measurements,

Data = Vo.t/V_ 4 (6)
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WhenRref = R,

Data = IAR/IRre f (7)

Data = AR/R (8)

independent of I. For this reason, ratiometric voltage measurements make excitation regulation

theoretically unnecessary.

Current

loop Rw 1

Rw3

E]--'°rRg = R + AR

Rw4

Rwire

Unregulated
excitation

Voltage difference
measuring system

Rref i

-__ ÷

B

m

t

Vg = I (R + AR)

Vre f = I Rre f

Vout

Vref

r
Figure 3. Current loop system with ratiometric output.
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Practical ratiometric current loop voltage measurements can be accomplished in at least two

ways. The V,.ef can be used as the reference input to the system analog-to-digital converter to
achieve ratiometric current loop measurements. Alternatively, the measurement of Vou t can be

numerically divided by a high-resolution measurement of V,.ef taken at essentially the same exci-

tation current I during which Vou t was measured.

In practice, the noise floor of the data varies with excitation level. Lower excitation levels nec-

essarily result in a lower signal-to-noise ratio. If, however, excitation is maintained at a reason-

able level, then the data output will be at least as precise and accurate from ratiometric measure-

ments as with carefully regulated excitation. Current loop signal conditioning can be designed to

operate without the expense of regulation circuitry over the useful life of a battery power supply.

For simplicity, the equations developed later in this paper assume constant current regulation.

Those equations adapt directly to ratiometric measurements to yield the same data result with

unregulated excitation.



VOLTAGE DIFFERENCE MEASUREMENT

The key function that makes possible the current loop paradigm is four-terminal voltage differ-

ence measurement. This measurement can be accomplished in many ways. The objective is to

develop an output that is in direct proportion to the difference between two electrical potential

differences. The resulting output must have appropriate stability and resolution for the intended

application. Strain gage signal conditioning requires stability and resolution to within a few
microvolts.

Several fundamental possibilities have been identified for accomplishing voltage difference

measurement and are described in the following subsections. These possibilities develop a single

potential difference output which is then observed with a conventional two-input voltmeter hav-

ing suitable precision and stability. Other possibilities may also exist.

Potential Transport

A first potential difference can be transported from an inconvenient environment to another cir-

cuit location where it can be conveniently observed. This approach has found use in the "flying

capacitor" multiplexer circuit.

Figure 4 shows a flying-capacitor-based current loop circuit which uses this approach. In the de-

velopment of the current loop concept, potential transport was the first approach identified which

..______Rw3

Rw4

Excitation defeat

.flIc.,

V
-...--

92O65O

Figure 4. The flying capacitor circuit for developing a voltage difference measurement.



provided sufficient stability and resolution for strain gage signal conditioning. The Vref is trans-

ported to appear across a capacitor in series with Rw4. Then, Vou t is observed as the voltage dif-

ference between V 8 and Vref. This circuit includes switches to accomplish various calibration and

data validity assurance functions. Excitation defeat, output short, and shunt calibration can be

added to all circuit examples. 5

Current Transoort

An electrical current can be modulated to carry information. This approach is used in the data

current and current-summing amplifier circuits which are described in the following sub-

subsections.

Data current circuit

A voltage difference measurement can be accomplished when a "data current" is routed through

a load resistance located where its voltage drop can be observed in series opposition to a second

voltage level. A conventional voltmeter then indicates the desired voltage difference.

Figure 5 shows a current loop circuit using a data-current-based voltage difference measuring

circuit. Here, the voltage developed across Rdl is caused to equal Vg by the operational amplifiers

OA 1 and OA2 and the current regulator pass element, Q 1. This operation develops data current

Rwl

Rw3

Rg

Rw4

÷

Vg
E

Excitation defeat

OA1

Rdl

OA2

iD=Vg/Rdl V

1
m

Rw2 Rh

Rref

Figure 5. Data current circuit for developing a voltage difference.
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ID = Vg/Rdl (9)

Amplifier OA 1 is connected to cause the voltage sensed through Rw3 to appear at the top end of

Rdi. The input of OA2 causes the voltage sensed through Rw4 to appear at the bottom end of Rdl

by turning on Q 1 to cause the voltage drop across R d 1to equal Vg. The R h provides a loop voltage

drop to allow enough "headroom" to permit Q 1, the data current pass element, to operate
unsaturated.

The voltage drop across Rd2 is equal to Vg when Rd2 is equal to Rdl. The Vout is then the desired

voltage difference between Vg and Rref. Amplification is available in this circuit when Rref and

Rd2 are proportionally greater than R and Rdl. The output of this circuit is

K = Rref/R = Rd2/Rdl (10)

Vout "-" gvg - Vre f (11)

Vout = KIAR (12)

Current-summing amplifier circuits

Operational amplifiers connected to perform precision analog arithmetic can develop an output

proportional to the difference in two input potential differences. The following sub-subsections

use a summing amplifier and an instrumentation amplifier as examples to illustrate these

possibilities.

Summing amplifiers. Figure 6 illustrates a classic analog subtraction circuit. This circuit uses

operational amplifiers in a summing configuration to develop an output proportional to the volt-

age difference between two sets of floating inputs. Amplifiers OA1 through OA4 act as buffers

to present a high impedance at their four inputs to the circuit nodes where the two voltage drops,

Vg and Vref, are sensed. Amplifier OA4 is unnecessary when its input is from a low-impedance
point, such as a power supply output. Input summing resistances, Ri, and gain-setting resistances,

R o, are each matched resistance sets. If the R i resistors were directly connected to gg and gre f,
then significant currents could be diverted from the current loop to the voltage difference mea-

suring system, hence the need for buffer amplifiers OA 1 through OA4. Absence of buffer ampli-

fiers could cause the output to be unacceptably influenced by R w 1 through Rw4. Amplification is

available in this circuit in proportion to R o IR i. The output of this circuit is

gout-" (gg- gref)(Ro/Ri) (13)

Vout = IAR(R o IR i) (14)

Instrumentation amplifiers. Figure 7 illustrates subtraction by means of an instrumentation am-

plifier circuit. When operating at unity gain, an instrumentation amplifier produces an output

voltage equal to the voltage difference between its input terminals. This output voltage is devel-

oped with respect to the point at which the output sense terminal is connected. By this means,

the input level can be replicated at another point in the circuit to appear in series opposition to a

second voltage. By connecting the sense terminal to the bottom of the reference resistor, the volt-

age between the instrumentation amplifier output and the most positive end of reference resistor

8
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Figure 6. Operational amplifier circuit for developing a voltage difference measurement.

is Vg - Vref, the desired voltage difference output. Gain is also available in this circuit when the

instrument amplifier gain is adjusted to equal Rre f/R. The INA114 instrumentation amplifier is

an appropriate choice for this purpose because of its low output-referenced errors.

CALIBRATION APPROACHES

A means for calibrating the overall measuring system end-to-end with respect to input resistance

changes is a desirable operational feature. Fortunately, there is no need to parallel a remote Rg to

achieve a useful calibration for sensitivity to individual loop resistance changes because current

is the same in all parts of the loop. The circuitry carrying loop current is indicated by heavy lines

in figures 1 through 15. If the desired output is the difference between two remote resistance

changes, then paralleling one of these resistances may be necessary for a useful calibration. Cal-

ibration by changing the reference voltage and gage current are described next.

Chanein_ Reference Voltaae

Figures 1, 2, 4, 5, 6, and 7 show a calibration circuit that changes the reference voltage by a pre-

dictable amount, AVca I. This circuit consists of a calibration resistor, Rca l, which is electrically

paralleled with the reference resistor, Rref, while the calibration switch is closed. This connection

reduces the apparent resistance of Rrefby ARca t as calculated from

ARca l = Rref- (Rref )(Rcat)/(Rref + Rca l) (15)
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Figure 7. Instrumentation amplifier circuit for developing a voltage difference measurement.

The mechanical strain simulated by a AV calibration is

Strain =ARca t/(GF Rg) = Rrefl/[GF Rg(Rref+ Rcat)] (16)

For convenience in reducing strain gage data when R s = Rref,

Strain = Rref /GF (Rref + Rcat) (17)

Because the same current, L flows in all parts of the current loop, an apparent reduction ARca t

in R,.ef appears in the system output as a voltage change, AVcal, as though there had been an

equivalent increase, ARca t, in Rg. Thus, Rca l, Rg, and Rref define a reliable overall measurement

system sensitivity factor when a change in system output is caused by paralleling Rref with Rca b

Chan_in2 Ga_e Current

Several new opportunities for circuit features develop when the voltage VrefaCross Rre f is con-
trolled to be constant in the feedback loop which regulates excitation current. As an example,

figure 8 illustrates the change in excitation current, Alca l, calibration technique.

10
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The constant current regulator operates by forcing sufficient current through the loop to cause

the voltage drop across Rre f to equal the reference source. This operation maintains the loop
current at

I = VreflRref (18)

Connecting Rca I in parallel with R,efCauses a calibration current increment, l_Ical, to additionally

flow in the constant current loop.

l_tlca l = Vref/Rca I (19)

The output indication AVca t is a function of the gage resistance Rg and l_lca I. Note that from the

voltage difference measuring system perspective, AVca Icould have been developed by either a

change in gage resistance, ZkRcal, or by a change in excitation current, ZXlc,,t . Equation 20 defines

this equivalence.

A Vcat = l_tlca I Rg = hXRca t (20)

Substitution shows that

ZkRca I IRg = Rre f IRca I
(21)

11



Note thatthedenominatorof equation21,which modelsthecurrentchangecalibration,doesnot
include Rg as does equation 16 for voltage change calibration. By definition, strain is developed
from resistance measurements by means of a gage factor, GF, calibration. That is,

GF(strain) = AR/R (22)

As a result, the strain simulated by a A/calibration is

Strain = Rref /( GF Rca t) (23)

This result is interesting in that the data shift caused by paralleling Rre f with Rca I provides the

system sensitivity to AR/R without prior knowledge of Rg.

Note that A/calibration involves precise currents flowing through Rrefand R 8. A small systematic
error can exist when a A/offset adjustment circuit is also in use. This error is typically ignored,

but it is simple to remove at the "balance" condition (zero electrical output from the voltage dif-

ference measuring system). In this situation, the magnitude of Rg instead Rre f in equation 21 is
used.

OFFSET ADJUSTMENTS

Offset adjustments should be derived from the excitation current level. This derivation will cause

excitation level variations to result in percent-of-reading sensitivity errors rather than in addi-

tional percent-of-full-scale offset drifts. Offset adjustment by changing the reference voltage and

by changing the gage current are described next.

Changing Ga_e Current

Figure 9 illustrates a A/offset adjustment circuit. Magnitude of the offset adjustment is limited

by Roffse t. Resistor Roffse t is connected between the positive end of Vref and a potential Voffse t, with

a magnitude and polarity adjustable between zero and 2Vr_ f. This circuit provides a variable

bipolar offset current, -+.loffset, which increases or decreases Ig.

+-Ioffset = + Voffset /Roffset (24)

The offset current is applied additively to the gage current, ]gage, to cause the gage voltage, Vg,

to approach Vre f, the voltage drop across the reference resistor.

Vg = (Ire f + loffset)Rg (25)

Chan2in_ Reference Volta2e

Figure 10 illustrates a AV offset adjustment circuit with A/calibration. The offset level is applied

additively to the reference voltage before it is sensed by the voltage difference measuring system.

This approach does not affect the level of calibration output from shunting Rref with RcaI. Offset

authority is established by the ratio of output-to-input offset amplification resistances, Roo to Rio.

12
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APPLICATIONS

Examples shown in figures 1 through 10 sense the voltage drop, Vg, directly across a gage resis-

tance. This connection causes the output of current loop signal conditioning to be uninfluenced

by any lead wire resistance as long as the voltage difference measurement system and the current

regulator operate within their ability to reject common mode voltages and to deliver a constant

current to the set of resistances in the loop.

In addition, these figures provide separate outputs for each gage resistance in the current loop.

Arranging two or more gages in a current loop circuit such that gage resistance changes add, sub-

tract, or both, to develop a single output can be useful. Half- and full-bridge arrangements of the

Wheatstone circuit combine gage outputs in this manner. 2 Current loop signal conditioning pro-

vides more analog computation opportunities than the Wheatstone bridge. The application exam-

ples that follow show how additional computations can be accomplished.

Minimizin2 Conductor Ouantitv

If lead wire resistances are consistent enough, then acceptable results may be obtained by using

fewer lead wires. Three-wire connections to one-fourth- and one-half-bridge Wheatstone bridge

circuits always depend on consistent lead wire resistance. 2

Three-wire connection of gage resistances in a current loop is accomplished by including a lead

wire resistance with each monitored resistance (R w ] with Rg and Rw2 with Rref) (fig. 11). As long

as Rwl and Rw2 remain identical, they can vary without their changes being observed. All other

benefits of current loop signal conditioning remain available in this situation.

Equations 26 and 27 describe three-wire gage connections.

Vou t = I [(R + zS_R+ Rwl) - (Rref+ Rw2)] (26)

When Rwl = Rw2 and Rref= R,

Vout = I (AR) (27)

This result is the same as in equation 2. Lead wires with resistances that vary identically will

induce no more than a constant offset in the output indication.

Usin2 Analo2 Computations

Analog computations are possible in current loop circuits by including the voltage drops of

additive gages in the direct (Vg) input and the voltage drops of subtractive gages in the inverting

(Vref) input of a voltage difference measurement circuit. In this situation, calibration by shunting
a remote resistance in the circuit may be necessary. Shunting remote gage resistances through

their sense lead wires is necessary because no "local" reference resistance is sensed by the volt-

age difference measuring circuit. Single and multiple loop computations are discussed in the fol-

lowing sub-subsections.

14
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Single loop

A variety of analog computations can be implemented within a single loop. These computations

are accomplished by using one or more remote gages in a current loop to develop Vg, Vref, or both.

Note also that Vs for one voltage difference measuring circuit can be used as Vref for another cir-
cuit. This feature makes the constant current loop an extremely versatile circuit for analog com-

putations based on changes in remote gage resistances.

Apparent strain corrections. These corrections are accomplished by developing Vreffrom the

voltage drop across an "unstrained" gage in the same temperature environment as one or more

strain-sensing gages. Figure 12 shows how apparent strain corrections are done without devel-

oping errors from lead wire resistances. Here, shunting Rca I across the remote unstrained gage

provides a simultaneous calibration output for each of the strain-sensing voltage difference mea-

suring systems.

Unlike the Wheatstone bridge, a single unstrained gage in a current loop can provide temperature

compensation for several independent strain-sensing gages, for example, a strain gage rosette.

This circuit minimizes gage and lead wire quantity in a circuit that is insensitive to lead wire re-

sistance changes. If wire resistances Rwi and Rw2 remain alike, then only three lead wires may be

required.

15
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Figure 12. Temperature compensation using an unstrained gage for the reference resistance.

Wheatstone bridge computation similarities. Figure 13 illustrates how a set of four gages can

be connected in a current loop such that their resistance changes add and subtract in a manner

similar to Wheatstone bridge circuits. 2 Two gages comprise the additive and two gages comprise

the subtractive voltage-sensing segments of the current loop. Note that any number of gages

could have been included to expand the analog computation equation. When each gage has the

same initial resistance, the output from this circuit is

Vou t -- l(Z_Rg I + l_Rg 2 -- l_kRg 3 --/_gg4) (28)

Gage resistance labels in figure 13 do not reflect the adj acent positions they would have in a four-

arm Wheatstone bridge arrangement. Resistance changes in opposite Wheatstone bridge arms are

additive; such changes in adjacent arms subtract. 2 IfRwl and Rw2 are sufficiently alike, then the

current loop equivalent of the Wheatstone bridge can be achieved with only three lead wires.

Multiple loops

Figure 14 illustrates how multiple current loop channel outputs can be combined to achieve a sin-

gle output that is independently influenced by each current loop. This circuit accomplishes the

calculations for combining measurement channels to implement loads equations. 7 The output

from this circuit is

Vou t = RF(VIlRI1 + V2/RI2 + V31RI3 - V4/RI4 - V51RI6 - V6/RI6) (29)

16
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Figure 14. Multiple loop computation circuit.
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Modifvin_ Existin_ Wheatstone Brid_,e Systems

A substantial capital investment already exists in measurement systems that use Wheatstone

bridge-based signal conditioning. Converting these existing systems to current loop operation is

possible and practical.

Figure 15 shows a NASA-designed circuit modification to the existing Dryden Flight Research

Center, Thermostructural Laboratory, Edwards, California, data acquisition system. This modi-

fication converts the signal conditioning from Wheatstone bridge to current loop by replacing the

Wheatstone bridge completion and calibration circuitry. No other hardware or software changes

were required to include current loop signal conditioning.

Several hundred channels of this circuit are now in daily operational use. All component values

are identified. The designated INA 114 instrumentation amplifier component is critical. The three

operational amplifiers which it contains are essentially identical. As a result, this component has

exceptionally low output-referred errors.
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Figure 15. Modification to convert existing equipment from Wheatstone bridge to current loop
circuitry.

CONCLUSIONS

The constant current loop is a fundamental signal conditioning circuit concept that can be imple-

mented in a variety of configurations. Current loop signal conditioning circuits can be insensitive
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to changesin theresistanceof anyleadwire. Thecurrentchangecalibration identifies sensitivity
to strainby developinganoutput that is directly proportionalto the gageresistanceat the time
of calibration. AdaptingexistingWheatstonebridge-basedmeasurementsystemsto currentloop
operationcanbepractical.Moreapplicationarrangementsarepossibleusingtheconstantcurrent
loop thanusing theWheatstonebridge.
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